第453章 楊老:無所謂,我會出手
「.「
雖然此時心中感慨萬千,情感複雜無比。
但作為一名性格極其理性的科研汪,徐雲的腦海中多少還存留著一部分清明。
因此他很清楚。
現在不是致謝或者表達情感的場合,全球的物理愛好者此時都關注著這裡的情況。
即便是再複雜的情感,也只能等到台下去說。
現如今他的當務之急不是兒女情長,而是要儘可能的展現自己的能力,不能讓周紹平的好意白費。
想到這裡。
徐雲不由深吸一口氣,朝周紹平投去了一道感激的眼神。
旋即整個人的表情再次恢復了原先的平靜。
他仿佛什麼事都沒有發生過一樣,看起來就像是個請教問題的學生,對周紹平問道:
「周院士,您覺得我的方案可行嗎?」
周紹平思索片刻,點了點頭:
「可行。」
周紹平的這句話並不是客套,徐雲的這個思路是真的令他有些意外兼驚喜。
實際上。
在剛點名徐雲做助理的時候,周紹平確實有些許給徐雲架舞台的想法,但這個念頭一開始並不強烈。
畢竟架舞台的前提是徐雲有真才實學,或者說在某個問題上表現出了真才實學的素養。
否則不就和沒演技卻要強吹演技,甚至搞虛假上座率刷票一樣了嗎?
若真是如此。
徐雲和周紹平乃至整個華夏科學界都會淪為笑柄。
周紹平願意做春泥不假,但不代表他會做某些蠢事。
因此在一開始的時候,他只是想先行觀望一下,看看有沒有什麼機會給徐雲搭個舞台。
後來包括贗標量的那部分卡殼,也都是他遇到的真實情況,而不是裝出來的把戲。
結果沒想到.
徐雲的思維竟然如此敏捷,前後沒幾分鐘就給出了一個非常精妙的計算方向。
加之有此前在錦屏深地實驗室那次的配合經歷打底,周紹平才臨時做出了這麼個決定。
也就是有徐雲表現出了貨真價實的能力這個『因』,才有的周紹平所選擇的『果』。
因此對於徐雲的思路,周紹平確實雙手贊同。
在周紹平做出決定後。
徐雲便不再遲疑,開始計算起了繞y軸旋轉算符的矩陣元。
這其實不是一件容易活兒。
旋轉矩陣和費米面一樣,也是一個涵蓋多領域的玩意兒。
比如shader也就是編程領域中就也有旋轉矩陣,不過shader的旋轉矩陣很容易。
只要通過正餘弦關係做正餘弦展開,然後做成矩陣相乘的格式,再用三個向量點乘充當正交基底就行了。
但到了粒子物理領域嘛
這事兒就比較複雜了。
因為它涉及到了實標量場的正則量子化範疇。
眾所周知。
對於一個經典的由n個質點所構成的力學系統,它的廣義坐標可定義為 qi(i=1,2,.,n)。
其中n=3n為廣義坐標空間的維數。
這時候呢。
系統的拉氏函數定義為:
l=l(qi,q˙i),這道公式標註為1。
而對於場Ψ,則它的拉氏密度函數l可定義為:
l=l(Ψ,μΨ)標註為2。
且拉氏密度函 l是一個標量,其中場Ψ可以是一個標量、旋量、矢量或張量。
因此在彎曲時空中,一般物質場(引力場除外)的拉氏密度應該可以寫成:
l=l(Ψ,μΨ)標註為3。
對於微觀系統